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Abstract An alternative procedure to the classical method for evaluating the
four-electron Hylleraas-Cl integrals is given. The method consists of direct integration
over the ri3 coordinate and integration over the coordinates of one of the electrons,
reducing the integrals to lower order. The method based on the earlier work of Calais
and Lowdin and of Perkins is extended to the general angular case. In this way it is pos-
sible to solve all of the four-electron integrals appearing in the Hylleraas-CI method.
The four-electron integrals are expanded in three-electron ones which are in turn ex-
panded in two-electron integrals. Finally the two-electron integrals are expanded into
two-electron auxiliary integrals which usually have one negative power. The use of
three- and four-electron electron auxiliary integrals is avoided. Some special cases
lead to one- and two-electron auxiliary integrals with negative powers which do not
converge individually but do converge in combination with others. These relations
and their solutions are presented, together with results of various kinds of integrals.

Keywords Hylleraas-CI - Interelectronic distance - Four-electron integrals

1 Introduction

The highly accurate calculation of energy levels and properties of the atomic elements
is still a challenge. The Configuration Interaction (CI) method is known to converge
extremely slowly. As is well-known, the explicit inclusion of the interelectronic dis-
tance in the wave function accelerates the convergence of the wave function expansion
[1] (which results in a dramatically smaller number of Slater determinants). Although
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the integrals occurring in the explicitly correlated methods are usually more difficult
to evaluate and their calculation is more time consuming than the electron repulsion
integral of the CI method, the number of integrals is smaller than in standard CI
calculations. As a result, highly accurate explicit correlated calculations require less
computer time than the corresponding CI calculation. It is therefore of importance
to investigate mathematical algorithms of integral evaluation in order to facilitate the
application of the explicitly correlated methods to large systems.

The integrals treated here are radial ones which contain s-orbitals and the
so-called angular correlated integrals, i.e. integrals containing the interelectronic dis-
tances r;; and non-zero angular momentum p-, d-, f-, - - - Slater orbitals. They arise in
the method that combines the advantages of inclusion of the interelectronic distances
in the wave function with easier integration techniques. This method is the Hylleraas-
Configuration Interaction (Hy-CI) method introduced by Sims and Hagstrom [2,3],
and independently by Woznicki [4], as Superposition of Correlated Configurations
(SCC). As Woznicki [5] pointed out: “The method represents some kind of gener-
alization of the conventional CI procedure”. In fact, the Hylleraas-CI method is an
alternative to the CI method.

In a previous paper [6], we have evaluated some of the three-electron integrals of
the Hy-CI method by integrating directly over r;; and over the coordinates of one of the
electrons. In this paper, the method is extended to the calculation of the four-electron
integrals occurring in the Hy-CI method for any atomic system. Four-electron type is
the highest order of integrals which may occur within the Hy-CI method. This is due
to the form of the matrix elements when using a wave function which contains up to
one r;; per configuration. The four-electron integrals are of three types:!

<r12r13> <r12r13> <r12r34> 0
rig | rag | rs |

The literature about four-electron integrals is not as numerous as in the case of the
three-electron ones. The first techniques to evaluate four-electron integrals appeared
in the 60s: the direct integration over r;; [7] in radial integrals, a mixture of direct
integration and usage of auxiliary three-electron integrals [8], a method using deriv-
atives from Roberts [9] without computational implementation, and a Fourier trans-
form technique from Bonham [10], which also was not implemented in computer
programs.

The classical method for solving the four-electron integrals consists in expanding
them in terms of auxiliary four-electron integrals called X. The auxiliary integrals
A,V,W and X are defined in Appendix A. The auxiliary four-electron integrals X
were first introduced by Sims and Hagstrom [2] as a continuation of the James and
Coolidge definitions of two- and three-electron auxiliary integrals V, W [11] (five-
electron integrals, if necessary, would be Y, and six-electron ones, Z). More recently,
Kleindienst and co-workers [12] evaluated linked four-electron integrals (containing

! The notation e. g. (r12r13/r14) represents the integral where the left and right hand orbitals of electrons

1,2, 3 and 4 are involved: (¢ (r1)p (r2)¢ (r3)¢ (rq)|r12r13/r14l¢(r1)d (r2)¢ (r3)¢ (ra)). The indices of the
actual integrals can be interchanged to write them in these forms.
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two r;; per configuration) using auxiliary integrals X. A majority of the four-electron
integrals arising in the Hylleraas four-electron problem were solved by King [13-15]
by a reduction to auxiliary three-electron W integrals. Frolov [16] expressed the aux-
iliary X integrals as a limited sum of the three-electron ones W [16,17]. The author of
this paper [18] also studied some cases of four-electron integrals for angular orbitals
by the classical method. Recently, Sims and Hagstrom [19] have evaluated with high
accuracy (more than 30 decimal digits) the angular correlated four-electron integrals
of Eq. 1 in terms of four-electron auxiliary X integrals, and correlated three-electron
ones in terms of W auxiliary integrals [20]. Those integral values (J.S. Sims, ‘“Per-
sonal communication”) have been used throughout this work to check the approach
presented here.

In conventional Hy-CI calculations of the first row of atoms, the orbital basis may
contain a large number of orbital exponents. In our computer program the number of
X auxiliary integrals which are computed and stored in memory grows as ng - X nf,‘, ow>
where 7, is the number of atomic orbitals with different exponents and 7 ., is the
maximal value of the sum of the powers of the charge distributions and operators. For
atoms with N > 5 the number of integrals which have to be calculated would require
huge amounts of memory to store. This was the case in calculations on boron atom
which are in progress [21].

In this paper the integrals are evaluated by integrating directly over the interelec-
tronic distance coordinates. In this way it is unnecessary to expand the 7;;s in r; and
r;j by the Laplace expansion, which produces a large number of auxiliary integrals.
Instead a successive integration over the coordinates of one electron is done and inte-
grals of lower order, of one electron less, are obtained. The four-electron integrals are
then broken down into linear combinations of three-electron integrals. As shown in
the previous paper, the three-electron integrals are evaluated in terms of two-electron
ones and consequently, the calculation of auxiliary four- and three-electron integrals
X and W is entirely avoided, with great saving of computer memory, especially in the
case of the X auxiliary integrals which require the construction of very large tables
whose dimensions depend on the number of different exponents.

Our method has its origin in Calais and Lowdin’s [22] idea of direct integration over
rij, which they applied to evaluate angular two-electron integrals in the year 1962.
Also in 1962, Szasz [23] developed basically the same method of direct integration
to evaluate linked three-electron integrals. Afterwards, Perkins [7] in 1969 extended
and improved the method for the four-electron integrals containing radial s-orbitals.
More recently, Yan and Drake [24] have generalized the angular two-electron integral
case and solved some cases of relativistic two-electron integrals [25].

The concept of expanding an integral in others of lower order has been often used
in the literature. King [13] integrated separately a part of a four-electron integral with
many correlation factors and expressed it in terms of three-electron W auxiliary inte-
grals. The expressions obtained are similar to the ones shown here. Other examples
are expressing higher order auxiliary integrals in terms of lower order ones, as in Sims
and Hagstrom’s [2] and Frolov’s methods [16,26] which expand a higher auxiliary
integral in others of lower order.

Finally, the mathematical investigations have been done with the help of the alge-
braic package program Maple 9 [27]. For speed we have developed a Fortran 90
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computer code which uses Quadruple Precision (QP), about 30 decimal digits of accu-
racy in our computer. Some examples of four-electron integral values are shown in the
Tables 1-3. We have reproduced the recent values of Sims and Hagstrom [19,20] and
thousands of other integrals were compared with ones obtained by Sims and Hagstrom.
In all cases there was complete agreement.

The method can also be used for the evaluation of fully linked four-electron inte-
grals and many-electron integrals to any power of the interelectronic coordinates.
In this work we have, without loss of generality, restricted the expressions to the
power 1. The extension to higher powers of r;; is straightforward.

2 Theory

Let us define the Slater orbitals with an unnormalized radial part and orthonormal
spherical harmonics as defined in Refs. [2,6].

d)*(r) — rn—]e—OH‘YlIn*(e’ ¢))’
¢'(r) ="l Ty 0, ¢). )

The one-electron charge distributions are written as in Ref. [20] as an expansion of
Slater orbitals:

l,’-‘rll{
Q) =¢*mg'®) = > DL +DCHU, mii L m) fix), ()
Li=|l; =1}
with
fi0) = rVilemery Mo, ), “

where N; = n; + n; — 1 and the exponents are w; = «; + c;. The symbol >’ @
means that summation is done in steps of two, i.e., L; = |/; —llfl, |1; —llfl +2,..., i+
Il =2,1; + 1/, and M; = m; — m;. The lowest value of L; also depends on m;, see
Appendix B of [6]. From now on we will use capital letters N, L, M for the quantum
numbers of charge distributions, while lower case letters n, [, m will be used for the
quantum numbers of the orbitals.

In defining the charge distribution above, we have expanded the products of spher-
ical harmonics in Eq. 2 using the formula [2, Eq. 12]:

QL+ 1!

Gy Cm LY 6,9, (9)

"0, Y0, ) = Z<2
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where the Condon-Shortley [28, Egs. 6—11] coefficients are defined by:

CL [ _ (47[)1/2 m'—m m’x m :
',m,l,m) = —(2L—|— 1)1/2 YL (9’¢)Yl’ (9,(]5))/[ 0, ¢)sin0dode,
(6)

L; satisfy the triangular condition |/; — llf| <L<lI +llf and the restriction L; > |M;]|.
The four-electron integrals which appear in the Hy-CI method are of the type:

. . My M, M3, My
L(N]5 N2’ N37 N47 w1, W2, W3, W4, 1’ 19 _l)LlsL23L37L4

rior
= / Q1 (r1) Q2 ()23 (r3) 24 (r4) ‘fl B dridrydrsdrs, )

4

where the powers of the interelectronic distances v, u and A have been setto 1, 1, —1,
corresponding to the integral cases which actually appear in the Hy-CI method. The
other two kinds of four-electron integrals are:

. . My, M, M3, My
Kl (N15 NZ, N37 N4? w1, W2, W3, W4, 17 15 _1)L|,L2,L3,L4

B dr drydrsdry, 8)
4

=/91(1‘1)92(1'2)93(1‘3)94(1‘4)

riar
r3
and

. . My, M>, M3, My
KZ(le N27 N37 N49 w1, W2, W3, W4, 17 19 _l)Lll,LQ,L3,L4

_ / 02 (r1) 2 r2) 2 13) 2 ) 2

dridrydridry. )

Graphically the L integrals are represented by a three-vertex and K integrals by an
open square [2]. Substituting for the charge distributions, the integrals to be evaluated
become:

. . 1 \M1. My, M3, My
L(N17N27N37N45 (1)],(02,(03,604,1,1, I)LlyL27L3»L4
l+1) L+, l3+lé I4+1)

_ 12 oy oy oy oo
4m)

Li=[h—1}|  La=lb—l5|  L3z=|l3—l5]  La=lla—1}]

4
< [JeL + D2k a). m: i m)

i=1

Ni—1 _N>—1 N3—1 Ns—1 — — — —
X/l"ll r22 r33 ’,44 e a)lrle a)zrze w3}’3e w4r4

13 dI']dl‘zdl‘3dI‘4.

<Y1 (01, $1) Y2 (02, $2) Y7 (03, 63) Y1 (4. §4) ;

riar
n
(10
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The K integrals are defined similarly:

My My, M3, M.
K1 (N1, N2, N3, Nas o1, 02, 03, 043 1, 1, =1y 172 050
| I+l b+l I3+14 I4+1

- S > ey ey e e
(4r)

Li=|h=I{|  La=|b=l)|  L3=|l3=1l5]  La=l[lsa—1}]

4
< [[eL: + n'2cta;. m: 1i.my)
i=1

Ni—1 _Ny—1 N3—1 Nj—1 — — — —
X/ 1 2= 1,003 4Tl pTOIT] W2 [, W3TS ,—WATY

rnoon 30 Iy
My M M My r12r13
XY, 01, @)Y (02, 92)Y ] (03, 3)Y " (64, pa) i dridrdridry,
(11)
and
My .My, M3.M.
K>(Ny, N2, N3, Nas 01, 02, 03, 43 1, 1, = 1) 17275
| h+1) L+l I3+ I+
_ 2 (2) 2) (@)
Ly eyey ey
Li=|li—1{|  Lo=llb—l5|  L3=|l=Ilj|  L4=|l4—1}|
4
< [e@Li + D'k d;. mp: 1. my)
i=1
X/r{vl—1r£\/2—1r§V3—1r£1‘V4—1€—w1r1e—wzrze—w3r3e—w4r4
" u M M r12r34
XYy O, @)Y (02, 92) Y0 (03, 3)Y )" (64, P4) s dridrydridry.
(12)

First the angular integration will be carried out, then the radial one.

2.1 L integrals

The four-electron integrals Eqs. 10—12, are functions of the quantum numbers, expo-
nents of the charge distributions of the four electrons and the powers of the inter-
electronic coordinates. The method employed here consists of the direct integration
over the r;; coordinates after a rotation of an axis and a change in the variables of
integration.

Let us consider the triangle formed by 7, > and r> in Fig. 1, and pass the z-axis
along r1 which is taken as a constant. A rotation has taken place. As ry coincides with
the z-axis, the angles have been transformed as 6, — 612 and ¢ — ¢12. The same
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Fig. 1 Definition of the z
coordinates of two electrons in
an atomic center |

rotation can be successively done for electrons 3 and 4. The angular functions of these
electrons are transformed according to the equation [6]:

M M M, M b
Y. 0.0 =D Y, 0. )P (cosbre™i?, (13)
M,
J

Here i is the imaginary number and the index j = 2, 3, 4 represents the electrons.
These rotations can be expressed as, e.g.in the case j = 2:

I 172
4 m)
my _ ma 2
Y, 2 (02, $2) = ,E 1 Y, (01’¢1)(212+1) Y, " (012,912), (14)
mhy=—1Ip

and have the same effect as those by Calais and Lowdin [22, Eq. 14], and those of
Drake [25, Eq. 6]. The details of the angular transformation and the proof of Egs. 13,14
are given in the Appendix A of paper I [6] of this series.

12, $13, and ¢4 are independent variables of integration (see in Fig. 1 how ¢2
is allowed to vary for a fixed r12), so substituting Eq. 13 into the integral Eq. 10 and
integrating over ¢12, ¢13, and ¢14 yields a factor of 27 for m), = m}y = m) = 0,
otherwise the integral vanishes. For convenience we will use factors 47 and %

Because of the axis rotation, the variables are transformed according to 6, — 612,
03 — 6013, 04 — 014, see Fig. 1. After these steps we have:

. . M, My, M3, My
L(Nl’N27N39N41w17w2aa)37a)491711_1)L1’L2’L3,L4
ll‘Hi lz+lé l3+l§ l4+l£

S LI I IS
Li=|h=lj|  La=lh—=l3|  L3=[l—=l5  La=|l4—1}
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4
< [@Li + O'V2chd. mj: 1. my)

i=1

N+l © Ntl 1
x/ r! 1+ drl/ r 2+ drz/ ErlzPLz(coselz) sin 012d012
0 0 0
Nyl 1
X/ r3 3+ dr3/ §r13PL3(008913) sin 013d013
0 0

© Ny+l 11
x/ ryt dr4/ —— Pr,(cos014) sin 014d614
0 0o 2ria

T 21
x / / Y71 01 oY)y (01, ¢DYS (01, Y], (01, ¢1) sinb1d01d .

0 Jo
(15)

The variables of integration, 017, 13 and 614 can be exchanged by the Hylleraas vari-
ables rq2, r13 and r14 because both sets of variables are closely related by the cosine
theorem:

(rlz—i—rjz—rz)

cos ) = 2 (16)

2rr;

As the respective volume elements of electrons 2, 3,4 are dt; = rjzdr jsinfy;do
d¢ j, the differentiation on both sides of the this expression yields the equation which
expresses the change of variables:

o
sin 60y ;d0;; = #drlj. (17)
J

The integration domains should be appropriately rewritten for ry ; variables. The min-
imal value of ry; is the absolute value of the difference between ry and r;, and ry;
takes its maximal value when r; and r; are on the same line in opposite directions,
r1 + r;. With these considerations, the radial part of the L integral can be defined as:

L(N1, N3, N3, N4; w1, w3, w3, w4; 1,1, —=1; Lo, L3, Lyg)

N+l Nyt
=/ o e_“"”drl/ r e dry
0 0

ri+ry 1 r2
x / ——12 P (cosb1p)dria
lri—ra| 27112

00 ritr 2
N3+1 T
X/ r3 3 e—w3r3dr3/ ——=Py,(cos013)dri3
0 Ir—r3] 27173

> Na+1 —wyry A
X rgte dry —~—— P, (cos014)dria, (18)
0 \

ri—rs) 27174

where cos 01 ; has the radial form given in Eq. 16. The integration over 0 is indepen-
dent of the integrations over r; (or 612 and 63 in Eq. 15), therefore we can solve first
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the four-fold integral over spherical harmonics:

T 2
1=/0 /O Y01, 0 )Y 00 ¢ )Y 2 (01, 91)Y 1 (O1. ¢y) sin(®))dO1dpy (19)
Using the property of the spherical harmonics:

Y201, ¢1) = (=DM 0, ¢1) (20)

and linearizing their product using Eq. 5 we get:

Y M55 01, o) Y1 61 1)

L3+Ly 172
2L +1)
= 2 gy O L Mai Ls, ~M) Y M0, 61). 21)
L=|L3—L4]
The integral Eq. 19 is then
L3+L4 1/2
2L+ 1)
I = (—1)M3 Z (Z)WCL(M, My; L3, —M3)
L=|L3—L4|

T 2
<[ e a0V G oY 6 gy sin@derder. 22)
0 0
Using again

YO, ¢ = (=DM y M6, 60), (23)

we obtain an equation which can be evaluated using the definition of Eq. 6 of the
Condon and Shortley coefficients. Since M|+ M+ M3+ M4 = 0 we have M3+ My =
—M; — M5y

b4 2
/0 /0 YO, ¢ 01, 01 Y61, ¢1) sin61d01d

T r2n
= (=M / / Y MO0, g0 Y201 01 Y T (01, ¢1) sin01d01d )
0 0

Iy L (2L+1)1/2
= (=DMs(My + My + M3 + My, 0)CL(Ly, —My; Ly, My)————. (24)
(47T)1/2
Finally substituting Eq. 24 into Eq. 22:
I=(=DMM5(M| + Ma + M3 + My, 0)
L3i+Ly
~ QL+ 1)
x>, OO (e, Mus Ly, —=M3)CE (L, =My; Lo, Ma) (25)
L=|L3—Ly]|
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and substituting this expression into the four-electron integral L yields:

My, My, M3, M.
L(N],N2,N3,N4;w],0)2,(l)3,a)4;1,1,_1) b

Ly,Ly,L3,L4
= (=DMTM§ (M) + Ms + M3 + My, 0)
ll'Hi lz—l—lé l3+l§ l4+lf‘ 4
?2) 2) ) )
x 2 > > > 2T
Li=|h—Ij|  La=lb—=l,|  La=|l-l5|  Las=ll4—1l;| i=l1
xQ2L; + D'V2ctidl, ml; 1;, my)
L3+Ly
> D@L+ 1DCHLy, —My: Ly, My)CH(La, My Ly, —M3)
L=|L3—L4|
L(N1, N2, N3, Ny; w1, w2, w3, w4; Lo, L3, Ly) (26)

The integration of the angular part leads to angular coefficients and radial four-elec-
tron integrals. Due to the Kronecker § and the Condon and Shortley coefficients many
terms of the summation vanish.

The radial four-electron integrals are defined in Eq. 18. We integrate over the coor-
dinates of only one electron, i.e. electron 2, in order to obtain a three-electron radial
integral of electrons 1, 3 and 4. During the following integration steps the coordinates
of electrons 3 and 4 are not affected.

The Legendre Polynomials Pz, (cos8;2) are expanded according to the Rodrigues
formula [29]:

1 & 2L — 2k
PLO) =57 D (= 1)"( )( . )ka, @7)

k=0

where | Ly/2] is the floor function and means the integer part of L, /2. After using
the Binomial Theorem twice and collecting powers in Eq. 18 we obtain:

L(N1, N2, N3, N4; w1, w2, w3, w4; 1,1, —=1; Lo, L3, Ly)
|L2/2] Ly—2k Lr—2k—q

S NOIESIC

« (L2 — 2k — C]) (—1)k+a /O0 rN|JrL272"€*21D*2(1e—wmdr1
p 22L2=2% [, 1

00 Y rn+r1 op
x/ dryry” *‘W‘/ PL3(cos013)dr13
0 r1—r3] 2rir3

X Natl el
x/ drary* 7‘”4'4/ ———Pr,(cosB14)dr4
0

Iri—rgl 27174

© Ny—Ly42k42 ERACE R,
x/ 27 P _wzrzdrz/ —rlg dria. (28)
0 |

ri—ra|
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Now it is possible to integrate directly over the r1, variable, for which the domain of
integration following Perkins [7] is divided in two parts:

ry ri+r2 0 ri+r2 00 ra+ry
D —>/ drz/ dr12+/ dr2/ dryp —)/ drz/ driz, (29)
0 ri—ry r ri—r 0 ri—r
ri+r2 o] ri+r2
D —>/ dl”z/ dria —/ dl’z/ dria. (30)
ri—ra r r—ri

The L integral is the difference:
L =D — Dj. 3D

In the first part D the integral over rp5 is:

+2
/r1+r2 L 2 +2 _ 1 qz: (26] +3) r2q+4 2i 21 32)
ri—r2 2 12 (261 +3) im 2i -1 "2 '

as aresult the variable 7|, has been expanded in powers of v and r,. In the integral part
D the variable r is not linked to any other variable, therefore it is possible to integrate
over r, leading to a one-electron auxiliary A(n, ) integral, defined in Appendix A:

[L2/2] Ly—2k Lr—2k—q ( 1)k+q

Z qz: pz: 22L2 2k(2q+3)

)

(zzj’+3)A<Nz+zk+2p+zl Ly—1,00)

p%

1
o0 NHLoH4=2k=2p=2i
1 1 2 P le_(l)lrldrl

dr3rN’%+1 —w3r3

\80\”

0

X
rn+r3 1 p
X

PLz(COSGB)dr]g
Iri—rs| 2V1 "3

o Ny+1 nta ol
X/ drar, 4 —w4r4/ ———Pp,(cos 014)dri4. (33)
0 lri—ra] 27174

The remaining integral over ry, 13, r4, r13 and ri4 can be written as a three-electron
integral [6, Eq. 21]. Altogether:
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Lof2 L2k Ly 2k=q  ( yktg

Z Z Z 22L2 2k(2q+3)

L> 2L2—2k Lo — 2k Ly —2k —gq
X
k Ly q P

2qg +3

XZ;(ZI )A(N2+2k+2p+2l L, —1,8)
1=

XJ(Ny + Ly +3 =2k —2p — 2i, N3, Ns; o1, w3, wg; 1, =15 L3, L), (34)
where the integral A(N2 — 1 4+ 2k +2p + 2i — L, w>) does not take negative powers
because by definition N» — 1 > L. J(Ny, Na, N3; w1, w2, w3; 1, —1; Ly, L3) is the
radial three-electron integral defined and evaluated in part I of this series of papers.
These integrals and the basic two-electron ones will be given in the next Section.

The integration steps in the case of the D; integral part are the same as for Dy,
except for the domain of integration Eq. 30:

|L2/2] Ly—2k Lr—2k—q ( 1)k+q

Z z Z 22L2 2k(2q+3)

Y

o0
Ni+Ly—2k—2g—-2p — _
X/ rl 1+L> q Pe wlrldrl/ dr3rN%+1 w3r3
0 0

rn+r3 ] op
X/ ——PLQ(COSQ]3)dr13
Ir—r3l 27173

N+l el
X/ dr4 4 —w4r4/ —— Py, (cos614)dri4
0 |

ry—r4] 27'17'4

o) ri+r 1 ry+ra 1
No+2k+2p—Ly —wrrm 2 +2 2q+2
x/ Ty e dry 3 Ny = 3 M . (35
ry rp—rp r—=ri

The direct integration over r; leads to:

1 1
D o (e r)203 — () — )23 (36)

2g + 3 is in this case always odd, therefore the difference never vanishes and can be
simplified as:

1

- _ 2g+3
(2q+3)(r2 r) T (37)

Due to the integration limits over r; in Eq. 35, we change the variables usingr,—r; = y
and the Binomial Theorem:
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e C IV,
- No+2k42p—Lo—j i
(ry + y)N2+2k+2p—La _ S ( 2 j_lp 2),12 p=La=i i1 (38)
j=i

The integral over y also leads to an one-electron A(n, ) auxiliary integral. Substitut-
ing these expressions in Eq. 35:

LL2/2] Ly—2k La—2k—q (1)k+a

z qz pz 22L2 2k(2q+3)

e

No+2k+2p+1—L;

1
X—
(29 +3) JZ—;
(N2+2];J:21p LZ)A(2q+2+j;wz)

o0
Ni+Ny—2g—j —
X/ i 1+N2—2¢q T (w1+wz)r1d,,1
0

00 Natl n+r o] op
X/ dr3r 3 —w3r2/ PLg(COSQB)drlg
0 Ir—r3l 2r1r3

00 Nat1 ri+ra 1 1
X/ drar, 4 —w4r4/ —— P, (cos 014)dri4. 39
0 |

ry—r4] 27'17'4

The remaining integrals over r1, r3, r4, r13 and r14 can be rewritten as a three- electron
integral:

|L2/2] Ly—2k Lr—2k—q ( 1) k+q

Z Z Z 22L2 2k(2q+3)

HE e

Na+2k+2p+1—L;

1
X —
(2q +3) ;
Ny +2k+2p — Lo N
( -1 )A(2q+2+1,/3)

XJ(N1 + N2 —2q — j— 1, N3, Ny w1 + o2, w3, w45 1, =15 L3, Lg). (40)
Altogether:
L(Ni, N2, N3, Ng; w1, w2, w3, w4; 1,1, —1; Lo, L3, Lyg)
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Lr—2k Lr—2k—q (—1)k+q

2. 2 e

g=0  p=0

e
i D)

20043
z(z‘f_ )A(N2—1—|—2k+2p+21 Ly, an)
i=1

XJ(N1+ Ly +2—2k —2p —2i, N3, Ng; w1, w3, wg; 1, —1; L3, Lg)
No+2k+2p+1—Ls

No»+2k+2p—L .
- > (”jfl” 2)A<2q+2+1;ﬁ>
j=1

XJ(N1+ Ny —2q — j—1,N3, Ng; w1 + w2, w3, w4; 1, —1; L3, Lg)

(41)

The total four-electron integral L is calculated with Egs. 26, 41 and it consists of a
linear combination of three-electron ones of the type (r12/r13). In part I of this series
of papers we have demonstrated that the three-electron integrals are expanded as a
linear combination of two-electron ones.

For L3, Ly = 0, the integral reduces to a radial one and agrees with the result of
Perkins [7, Eq. 20]. The auxiliary A integrals occurring in the expression of L have no
negative powers as No — 1 > L is by definition fulfilled. As the electron 1 is linked
to the other three, some cases of L four-electron integrals using this method” present a
difficulty. If the arguments of the J integrals are N1+ Lo +2—2k—2p—2i+ L4 <2
or N1 + Np —2q — j — 1 + Lg < 2, the J integrals are evaluated in a different
way, namely expanding them in auxiliary A integrals and combining these A integrals
appropriately. We show this in Appendix B. In Table 1 most of the integrals given
are examples of this special case of angular integrals with low quantum numbers. For
higher quantum numbers this problem does not appear.

In Table 1 the calculated values for a number of four-electron integrals are listed.
They have been calculated with quadruple precision (30 digits on our computer).
Using our method we have been able to reproduce all integrals of Tables 1 and 2 of
Sims and Hagstrom [19], with 30 decimal digits accuracy except for the 13th and 17th
integral of Table 1 of this paper, which have been reproduced with 26-28 decimal
digits. To improve the number of digits our program would need higher precision than
quadruple, as test calculations using Maple with 100 digits have shown.

2 If the evaluation of four-electron integrals is made in terms of A integrals, A with negative powers appear
even for radial four-electron integrals with low quantum numbers of r; (for example, integrals 1 and 2
of Table 1). The use of the non-trivial V auxiliary integrals given by Eq. 33 of Ref. [30] avoids most of
them.
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2.2 Kj integrals
We distinguish here two types of K integrals, K| and K». K arises from (r(2r13/r34)
(or the equivalent (rj2r23/r34) obtained by exchanging the indices 1 by 2). The inte-

gral K is defined in Egs. 8, 11. In order to perform the angular integration, a rotation
is made first:

M} M.
Y2 (02, 2) = D Y2201, ¢1) P2 (cos Opp)e! o012, (42)
M

Considering the interelectronic coordinates which appear in the integral K, we start

by performing the rotation 64 — 634 and ¢4 — ¢34 which transforms Y Z‘Z 464, ¢4).
This is accomplished by a rotation of the z-axis to coincide with r3:

M, M
Y O3, 00) = D V103, ¢3) Py (cos Oaa)e it (43)
m;
integrating over ¢34 the integral does not vanish for M) = 0, which leads to a factor 27:

b4 2
4 /0 /0 Y£Z3 (037 ¢)3)YI]}Z4 (03, ¢3) sin(93)d93d¢3

ntra
x/ —~——Pp,(cos 034)dr34. (44)
Ir3—ra] 27374

Writing Y 2;1 (03, p3) as Y ; M3*(93, ¢3) we can expand the product of spherical har-
monics with the same argument:

Y7 (03, ¢3) Y, (63, 63)

L3+Ly 1/2
QL+ 1)
= > <2>WCL<L4,M4;Lg,—M3)Y£43+M4(93,¢3). (45)
L=|L3—L4|

Considering now the interelectronic distance r3 in K1 we rotate Y 2/1 3+ Ma (03, ¢3) as
follows:

Y 3, g3) = D ¥ M 61, 1) P (cos B13)e M O, (46)
M/

Integrating over ¢13 we obtain:

. . M, My, M3, My
KI(N17N29N31N4aa)lva)27a)3sw41vvl’LsK)LlyLz,LS’LA‘
Zl"l‘li lz-ﬁ—lé l3+lé l4+l£
-y eye s ey
Li=|h=l||  La=|b=1l3|  L3=ll3=15]  La=l[lsa—1}]
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Li+Ly

x> Pam2-nphs

L=[L3—La|

4
< [eLi + D@L + D2t @), mi; i, mi)C" (La, Ma; Ly, —M3)
i=1

N1 N1 "1
X/ r = e_wmdrl/ ry - e—wzrzdrz/ §r12PL2(005912) sin 012d01>
0 0 0
o T
X/ I3 37 e_w3r3dr3/ §r13PL(008913) sin 013d013
0 0
Nl 11
X/ ry e_w4r4dr4/ —— Pr,(cos 634) sin 634d634
0 0 2}"34

4
T o M M M3+M.
X/o/o YO 0¥ 6, g0V 1, g sinidondgr. (@)

The three-fold integration over spherical harmonics can be done by using the Condon
and Shortley coefficients equation (Eq. 6) since M3 + My = —M; — M due to
S(M1 + My 4+ M3 + My, 0):

T 2
(=D /0 /0 YO, o) Y01, p1) YT 01, ¢1) sin61d01d g

QL+ 1)!/2

= (=DM2§5(M| + My + M3 + M4, 0
(=D™28(My + My + M3 + M4, 0) @)

CH(La, —Ma; Ly, My). (48)
Finally after angular integration we have the equation:

K1(N1, N2, N3, Ny w1, w2, @3, w43 1, 1, —1)2411,’3;1?’;;{3,:244
= (=DM M5 (M) + Mo + M3+ Ma, 0)

L1+l L+, 13+l§ I+ L3+Ly

SeTeyese o
L1=|11—l“ L2:|12—lé\ L3:\l3—l§| L4=|l4—lf‘\ L=|L3—L4|
L3i+Lyg

4
x Z @ H(ZL[ + DY22L + 1)

L=|L3—L4| i=1
x CLiql, m; 1;, mj)CH (Lo, —Mp; Ly, My)CE (L, My; L3, —M3)
x K1(N1, N2, N3, Na; w1, @3, w3, w4; Lo, L, Ly), (49)

which is written in terms of the four-electron radial integral K| defined as:
Kl(le NZ’ N37 N49 w1, W2, W3, W4; 1, 11 _1’ L27 L37 L4)

N+l Nt
=/ ot e_“’l”drl/ r e dr,
0 0
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rit+r2 r122
X/ —~—=Pr,(cosb12)dri
Iri—rs| 27172

00 ritr 2
N3+1 T g

x/ ry’ e*“)3’3dr3/ ——=Pr,(cos013)dr13
0 \rl—r3|2rlr3

00 r3tra 1
x/ ry 4+ e_‘”4’4dr4/ —~——Pp,(cos 034)dr34. (50)
0 Ir3—ral 27374

The following steps of radial integration are the same as in the case of the L four-
electron integral. Integrating over r; the resulting integrals are in this case linear com-
binations of integrals of the type (r13/r34). Note that these resulting three-electron
integrals can be rewritten by exchanging 3 by 1 and 1 by 2 and 4 by 3 in the form
(ria/riz):

K1(N1, N2, N3, Ng; w1, w2, w3, w4; 1,1, —=1; Lo, L3, L)
[L2/2] Ly—2k Lr—2k—q (_1)k+q

TR ICRIE

22 +3
x Z]:(Z?_l)A(Nl—1+2k+2p+2i—L2,w2)
i=
XJ2(N3 N1 + Ly +2 — 2k —2p — 2i, Ng; w3, w1, w43 1, —1; L3, Lg)
No+2k+2p+1—Ls

Nry+2k+2p—L .
- (”jfl” 2)A(261+2+J;ﬁ)
j=1

X Jo(N3, Ni+Ny —2g — j — 1, Na; w3, o14+w2, wa; 1, =15 L3, Lyg)

(S

Mathematically, this expression is the same as L but in J the positions of the variables
of electrons 1 and 3 are interchanged. The auxiliary integrals A do not have any neg-
ative powers. Although one of the arguments of J may be negative, this fact leads to
the non-trivial auxiliary integrals V' defined in Sect. 4. In this integral there is no need
to expand it into one-electron A integrals. Note that to achieve this goal an additional
Jo integral is introduced. The J; three-electron integral is calculated by integrating
over electron 3, and it is given in Sect. 3. As we see there are several possibilities for
evaluating an integral by this method. In Table 2 a number of K integral values are
shown. We have been able to reproduce all integrals of Tables 5 and 6 of Sims and
Hagstrom [19] to full accuracy.
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2.3 K, integrals

The four-electron integral K7 is usually known as (rj2r34/r23). The integration steps
are similar to the evaluation of L and K. The integral is defined in Egs. 9, 12. In K»
one has to pay attention to the details of the angular integration and to make the radial
integration this time over electron 4, in order to break the integral into a three-electron
one (r12/r23) which (by exchanging the electrons) has the same form as (r12/r13).
Similar to the case of K| we make the rotation 64 — 634 and ¢4 — ¢34:

M, .
Y Oa, pa) = D Y103, ¢3) P, (cos B3g)e i, (52)
u;

and expanding the product of spherical harmonics:

Y, 03, ¢3) Y] (03, 63)

L3+Ly 1/2
2L+ 1)
= 3 Oy O Ma Ly MY 6 ). (53)
L=|L3—L4|

Because of the interelectronic distance r»3 we have to rotate YI{V[ 3HMy (03, ¢3):

Y M 03, ¢3) = D ¥ B0, 42) P (cos baz)e™ 9, (54)
M/

and to integrate over ¢3. The integral does not vanish for M” = 0. After the rotation,
the product of spherical harmonics with the same argument is again linearized:

Y M0, 62) Y (02, 42)

Lo+L , 12
QL + 1) :
= > (2)—(4,1)1/2 CH (L, M3+ My; Lo, — M) Y5 0 ),
L'=|Ly—L|

(55)
still a rotation 6, — 0, takes place:

Y MM 0y o) = > ¥ MM 0y, 1) P (cos B10)e™M 2. (56)
M/

Integrating over ¢12, we are left with an integral which can be solved by the orthogo-
nality property of the spherical harmonics:

T 2
(— 1M+ MaMs / / Y, M1, o0 Y P 61, ¢1) sin 61d61d gy
0 0

=38(L1, L'YS(My + My + M3 + My, 0). (57)
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Finally we have:

M1, My, M3, M
K2(N17 N29 N31 N4; w1, W2, W3, W4, 11 17 _1)L1I,L2?L3’3L4 ¢

= (=)MIHFMAM s A4 My + M3 + My, 0)

L+ b+ I3+ la+l 4
> Z ) Z (2) Z (2) Z () H
Li=Ih=l|  Lo=lh—l)|  Ly=l—l4|  La=lla—l)] i=1
x(2L; + D2t ml; 1;, my)
L3+Ly Lr+L

x Z @ Z @DsLy, YL +D'2@2L + 1)!/?
L=|L3—Ls4|  Li=|L2—L|

x CH(Lg, My; Ly, —M3)CE (L, M3 + My; Ly, —M>)
x K2(N1, N2, N3, Ny; w1, w2, w3, wg; L', L, Ly). (58)

Note that the quantum numbers are in this case L’ and L. The radial K, integral is
defined as:

Kz(le N21 N3a N47 w1, W2, W3, W4, 11 19 _1; L27 L3a L4)

N+ % Nt
:/ ot e*“"r‘drl/ ry e dry
0 0

rntr2 1 op
X / —2 Py, (cos O12)dria
\

ry—ra| 27'11"2

[e%e} Nat1 r+r3 1 1
X/ r33 e_w3r3dr3/ ——— P, (cos 023)dr3
0 Ira—r3| 2?2?3

00 | r3tra 1 p
x/ 44+ _“’4’4dr4/ PL4(COSG34)dr34 (59
0 |

r3—rq| 2r3r4

Again the integration steps are the same as for the L and K, four-electron inte-
grals. Integrating over r4, the resulting integrals are linear combinations of (r13/r23)
integrals. These three-electron integrals can be rewritten by exchanging 3 by 1 and 2
by 3 in the (rj2/r13) form:

K>(Ny, N2, N3, Ng; w1, w2, w3, w4; 1,1, —1; Ly, L3, Lyg)
[Ls/2] Ly—2k Ly—2k—q

=530y CATCESS TE
=S 5 = 22La=2% (2 +2) Ly q

X(L4—2k—q)
p

2qg+2 2 43
x 2(2?_1)A(N4—1+2k+2p+2i—L4,a)4)
1=
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Table 4 Radial three-electron integrals J (N1, N, N3; w1, w2, w3; v, u; Lo, L3) calculated with loga-
rithms for fixed values of the charge distributions w1, w2, w3

Ny N N3 0 w3 Ly Lz ]

0 5 5 60 40 20 2 0 —0.14266 50857 19476 12083 50450 68127x 104
3 5 5 60 40 20 4 0 —0.49331 13373 76615 31682 76534 87812x 1076
0 5 5 60 40 20 4 2 —0.17528 95633 06438 99538 76513 41964 x 10~
4 7 7 60 40 20 6 0 0.35428 55073 38306 66730 68130 45224 x 103
0 7 7 60 40 20 6 0 —0.19235 56509 54578 54425 91799 81494107
0 7 7 60 40 20 6 2 —0.39543 96770 93723 45277 40630 83331x 10~/
0 7 7 60 40 20 6 4 —0.54334 04155 61880 05793 04685 06906x 108
1 3 0 40 60 60 2 2 —0.35281 77181 63470 39310 53392 42635x 108
1 3 -2 40 60 40 2 2 —0.74083 86745 43215 15568 43293 09478 x 10~
1 4 0 40 60 60 3 3 —0.34057 37116 33261 99831 61174 62451 x 107
1 4 -1 40 60 60 3 3 —0.81443 71430 70749 51970 23684 04683 x 10~
1 4 -2 40 60 60 3 3 —0.25239 92946 27632 92289 45554 52185 x 1078
1 4 -3 40 60 60 3 3 —0.11251 17498 58478 27242 70051 11489 x 10~
1 5 -4 60 60 40 4 4 —0.30727 91301 67632 47356 86814 26286 x 108
1 5 5

6 -5 60 6.0 4.0 —0.15002 99442 10105 40434 19894 34622 x 10~8

v=1land p= -1

XJ(Nyy N\, N3 +14+2—2k—2q —2p —2i; w, w1, w3; 1, —1; Ly, L3)

Ny+2k+2p+1—-L
o §+ 4(N4+2k+2p—L4

i )A<2q+2+j;w4>

j=1

X J(N2, N1, N3+ Ny —2q — j— 1; w2, w1, w3 + wa; 1, =15 Lo, L3)¢ .(60)

Equations 58, 60 define this class of four-electron integrals. The A integrals which
occur always have positive powers. There is only one case of this integral that has to
be treated especially, see Appendix B. In Table 3 some K, integral values are given.
We have reproduced all integrals of Tables 3 and 4 of Sims and Hagstrom [19] with
full accuracy.

3 Radial three- and two-electron integrals

The radial three-electron integrals have been derived in the first paper of this series
[6]. Two kinds of three-electron radial three-electron integrals J are used here. The
first J is obtained by integration over electron 2 and it is used in the four-electron
integrals L and K»:
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J(N1, N2, N3; w1, w2, w3; 1, —1; Lo, L3)
Ls/2) Ly—2k Ly—2k—
_Limik ZZ (ke Lo\ (2Ly — 2k (Lo — 2k
- 22L2—2k(2q+3) k L q

k=0 ¢=0 p=0

X(L2—2k—q)
p

q+2 20 43
Z(Z?_l)A(N2—1+2k+2p+2i—L2,a)2)

i=1

xI(N1+ Ly+2—2k—2qg —2p —2i, N3; w1, w3; —1; L3)

No+2k+2p+1—L
’ z” 2(N2~|—2k+2p—L2
ji—1

) AQRqg+2+ j; w)
j=1

xI(N1 4+ Na—2q — j—1,N3; 01 + wp, w3; —1; L3)j . (61)

The radial three-electron integrals J are then linear combinations of basic radial two-
electron integrals:3

I(N1, N2; w1, w2; —1; L) [VINi + L+ 1, N2 — L; w1, w2)

QL+ 1)
+V(N2+L+1, N — L; wp, w1)]. (62)

with the conditions Ny + L > —1, No + L > —1 and Ny + N, > —2in [ so that the
first argument k of V (k, [; «, B) is positive and k + 1 > —1.

The second J is J> and it is used in K. In J the integration is done over electron
3. The final expression is:

J2(N1, N2, N3; w1, wp, w33 1, —1; Lo, L3)
[L3/2] L3—2k L3—2k—q

-3 S > (—D)kta (Lg)(2L3—2k)(L3—2k)
= = = 22L3=2k(2g + 1) \ k L3 q

3 Unfortunately there is a typo in Eqs. 41, 44 of the paper I of this series. The correct expressions are given
in this paper in Eqs. 62, 64. Also Eq. 46 of paper I should read:

I[(N, Ny w1, w2;2; L) = (L, 0) [A(N] + 3, 0)A(N2 + 1, 02) + A(N2 + 3, w2) A(N| + 1, @1)]

2
*55(L, DA(N| + 2, 01)A(N2 + 2, w3).

@ Springer



1346 J Math Chem (2009) 46:1322-1355

X(L3—2k—q)
p

g1
x EZ(q )Am&-l+%+2p+%—L&w9

2i —1

i=1
X I(N1+ Ly —2k —2p — 2i, Ny, w1, w2; 1; L))
N3+2k+2p+1—Ls

N3 +2k+2p—L .
-2 (3 T 3)A(2q+1;w3>
j=1

XI(N1+N3—2q—j—1,N3;01+w3, 02515 L) g . (63)

The J, are expanded in integrals of the type I (N1, Na; w1, wz; 1; L):

1
I(N|,Nry;w1,wp; 1; L) = ————
(N1, N2 w1, ) QL+ D
1
——F(V(N L+1,Np,—L+2;wp,
><|: (2L—1)( (N1 + L+ 2 +2; w1, w2)
+V(N2+L+1, N —L+2;0;, 1))
1
—(V(N L+3, Ny—L;wy,
X(2L+3)( (N1 + L+ 2 w1, w2)
+V(N2+L+3,Ny —L; wy, wl))] (64)

The conditions are the same as before: Ny + L > —1, N, + L > —1 and
Ny + Ny > 2.

4 Auxiliary integrals

We have expanded the I(Ny, Na; w1, w2; v; L) integrals in two-electron auxiliary
integrals V (k, [; ., B). In the calculation of four-electron integrals three kinds of aux-
iliary V integrals can occur. The first kind with k, [ < 0 is the trivial one. The second
kind is the V integral with k +/ > —1 and k > 0, which is non-trivial and computa-
tionally more demanding. The non-trivial two-electron auxiliary integrals V have been
accurately evaluated by Sims and Hagstrom Eq. 33 of Ref. [30] using the so-called
Larsson sum [31]:

a1k

Vik, L, )= T

g=1

Ak +1+q; 0 + B). (65)

Fast and stable techniques of calculation of V are given in Ref. [30].
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The results using the Larsson sum have been compared with direct Maple calcu-
lations using the definition of the V (k, [; o, B) integrals and reversing the order of
integration. The power [ is negative, we write it here explicitly as —!/:

Vik,—1l;a,B)
o] 1 1 r
=/ r{‘ef‘”'drl/ —lefﬁrzdm =/ —lefﬂrzdrz/ rke=dry. (66)
0 noT 0 0

For a pair of given powers k, [ the Maple results of Eq. 66 agree completely with
the ones of Eq. 65. For instance, numerical checks up to k = 300 and [ = —10, for
exponents s = 0.0001 (s = «/(« + B)) have shown full agreement on one hand side
using more than 500 digits precision of Maple and on the other hand side using Eq. 65
in a Fortran program with quadruple precision.

When k, [ are both positive, these integrals are trivial and well-known. We have
used the Frolov and Smith expansion in terms of A auxiliary integrals [16] which is
very stable since it consists of a summation:

!

Vik.lia, p) =" (;) Al Ak +1 =1, a+pB), kI1>0 (67

I'=0

and again there is no loss of precision.

The third kind of V integrals are a new kind of integrals with arguments k+1 < —2,
which do not converge alone but certain combinations of them converge to a solution.
They will be treated in Appendix B.

5 Discussion

The Hy-CI method represents a true alternative to CI atomic calculations. The research
on integral evaluation methods, which is of mathematical nature, is important to facil-
itate the application of the Hy-CI method to atoms with number of electrons N > 5,
in order to be able to determine with high accuracy the energy levels of ground and
excited states, and properties of atoms with a large number of electrons.

Independent methods of integral evaluation are useful in the practice for checking
the computer program codes. Also efficiency and computation time can be compared.

In this work a new alternative method of evaluating all four-electron integrals
appearing in the Hy-CI method has been developed. This method has the advan-
tage that it requires only the calculation of two-electron auxiliary integrals. These
two-electron auxiliary integrals are an element of the classical method which has been
incorporated in this method to avoid its disadvantages. These disadvantages were due
to successive reduction to integrals of lower order, which led finally to one-electron
integrals containing negative powers. Integrations over variables with negative powers
were early known as “difficult integrals in Quantum Chemistry”. We have formulated
this method avoiding most of them.

@ Springer



1348 J Math Chem (2009) 46:1322-1355

The two-electron auxiliary integrals are easy to compute and stable algorithms are
reported. The calculated four-electron integrals using quadruple precision have been
thoroughly checked with the ones of Sims and Hagstrom [19] showing a complete
agreement to more than 30 decimal digits, except the cases discussed in the Appendix
B where we have obtained an agreement of 26-28 decimal digits. This accuracy could
be improved in our program by using higher precision arithmetic for those cases. The
integrals have also been checked using the algebraic package Maple with 100 dig-
its precision. The binomials and factorials of the formulas in the program have been
defined as real variables and have been calculated with quadruple precision.

By studying some cases of four-electron integrals which lead to lower order integrals
with negative arguments, new mathematical relations among one- and two-electron
auxiliary integrals and their solutions have been found. These auxiliary integrals with
negative powers of the coordinates maybe of importance for the solution of integrals
in other methods, e.g. relativistic integrals and many-electron integrals.

Our method is conceptually messier than the traditional method of expanding the
integrals in four-electron auxiliary ones, which looks more straightforward. But once
the algorithms are established, this method provides an easy way of computing four-
electron integrals using a minimum of computer memory. A computer program has
been written in Fortran 90 in the form of a tree: a subroutine for a four-electron integral
calls a subroutine or function for a three-electron integral which in turn calls a sub-
routine or function for a two-electron integral. This structure is very appropriate for
computer programs, since modern computers prefer direct calculation to large amounts
of storage. We plan to use our integral codes to perform the first Hy-CI calculation on
the boron atom.

Acknowledgements The author is deeply indebted to James S. Sims for fruitful discussions, advice, for
providing integral values necessary to check this method and for reading and correcting this manuscript.
Also the author would like to thank James S. Sims and Stanley A. Hagstrom for the computer program for
the Vkl auxiliary integrals and for the program to calculate Condon and Shortley coefficients. Finally the
author appreciates very much the support Peter Otto has given to this project.

Appendix A: the auxiliary integrals A, V, W and X

The so-called auxiliary integrals A, V, W, and X are the basic integrals used in the
calculation of atomic integrals. Although in this work only one- and two-electron aux-
iliary integrals are used, for completeness the definitions of the remaining ones are
given. The one-electron integrals for n > 0 are:

o n!
A = [ e an = (A1)
0

The auxiliary two-electron integrals are defined to be:
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Vk,l;a, 8) = // rirhe e =P dr dr,
O<ri<r<oo
oo

o
=/ r{‘e_“”dn/ rhe P2 dr,. (A2)
0 r

They can be calculated directly for positive powers k, [ > 0 [26], and for a negative
power [ < 0 and k 4+ > —1 [30]. Traditionally they were calculated using recursion
relations [11,32]. As the domain of integration is partitioned into two regions: r; < ry
and rp < rp, a two-electron integral is a sum of 2 V integrals.

In the domain of integration of the three-electron integrals there are 3! = 6 regions
given by permutations of 7y, » and r3. These regions are: r| < ry < r3,r; < r3 < ra,
r<ry<r3ry<ri3<ryr <ry <ryandr; < ry < rp. Integration leads to a
sum of 6 auxiliary integrals W defined as [11]:

3

o0 oo
= / rlendr, / rse Prdr / rie ""drs. (A3)
0 1 r

2

W(f, g ha B,y = /// rlfrzgrge_‘"”e_ﬂrze_yr3dr1dr2dr3
O<ri<r<r
o

Recurrence relations for f, g, h > 0 are given in Refs. [11,30,32]. Analytic expres-
sions are given in Refs. [16,17,26,33], [30, Eq. 32 ].
The auxiliary four-electron integrals are defined to be [2]:

X(f. g, h,i;a B,y,0)

://// rlfr‘zgré’rie_“”e_ﬂ’2e_7”’3e_8”dr1drzdr3dr4
O<ri<ry<ri<ry
o)

f o0 o (0.¢] .
:/0 r e_‘"ldn/ rzge_ﬁrzdrz/ r?e_y”dm/ rie™dry  (A4)
r T r

2 3

The domain of integration contains 4! regions given by permutations of ry, r2, r3 and
r4. Recurrence relations of X for f, g, h,i > 0 are givenin [2,12,19]. A four-electron
integral is a sum of 12 X integrals.

Appendix B: the basic integrals I with negative power

In this Appendix two algorithms for evaluating some difficult cases of four-electron
integrals are given in detail. The algorithms allow for the calculation of these cases
without the need for the W auxiliary three-electron integrals. As mentioned previously,
some cases of L four-electron integrals, e.g. (s(1)p(2)p(3)p(4)r1ar13/r1as(1)p(2)
p3)p4)) , lead to A(—n, @) with negative argument which have no solution by
themselves but they do have a solution when combined. Also there is one case of a K2
four-electron integral, (p(1) p(2)s(3)s(4)r12r34/r23p(1)p(2)s(3)s(4)), which leads
to I (N1, Na; w1, wo; —1; L) with both Ny, N> < 0. These integrals also do not have
a solution by themselves but they do when combined.
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Case 1: I containing A(—n, o).

As mentioned in Sect. 2, the calculation of the L radial four-electron integrals leads
to negative Ny in J(Ny, N2, N3; w1, w2, w3; 1, —1; Ly, L3) integrals which lead to
negative Ny in [ (N1, N2; w1, w2; —1; L) with Ny + L < —land N + L < —1, and
therefore to V (k, [; «, B) integrals with k < O which are not defined. This happens
when ny,n} (Ny = ny + n) — 1) are the lowest quantum numbers for a given sym-
metry s, p, or d (N1 = 1,2, 3) of the linked electron 1 and there are high angular
momentum coupling numbers L, L3, La.

In the computer program the resulting three-electron integrals J are first checked to
predict which ones will lead to some integrals V (k, [; «, B), (e.g. k, [ < 0) which are
not defined. The idea is to use the Larsson sum for V (k, /; , B) wherever possible,
otherwise the computation will become very computationally intensive. The computer
program contains two subroutines for the two-electron integrals 1 (N, N2; w1, w2;
—1; L). Those I which donotlead to k,! < Oin V (k,[; «, B) are computed as usual.
The ones that lead to k, / < 0 are expanded as a linear combination of auxiliary inte-
grals A(n, ). This last kind of [ integrals is separated into two parts. In one part
the sums including positive A(n, o) are calculated, setting the undefined A(—n, «) to
zero, and in the other part are the sums of / containing negative A(—n, o). These two
parts are added. This can be programmed in different ways. Here we give the formulas
for the integration of negative one-electron integrals.

First the four-electron integrals should be expanded into one-electron integrals
A(n, a).* The basic two-electron integral for any value of v > —1 can be written as
[6, Eq. 39]:

I (N1, Na; w1, wp; v; L)
© Ni-1 ® Nt
:/0 ' e_w‘”rlzdrl/o ry e "2 2dry

T+ ]y v+1
X / Py (cosB1p)dria, (B.1)
\

ri—ra| 21"11"2

Expanding the Legendre polynomials Pr,(cosf;2) according to Eq. 28, using the
Binomial theorem twice, with indices ¢, p and collecting powers:

I (N1, Ny; w1, wp; v; L)
|L/2] L2k L—2k—q

5 (22?1«:: (;)(uzzk) (L:]2k)

k=0 ¢g=0 p=0
X(L—Zk—q)
p

4 The following formulation is valid in general for any four-electron integral but would lead to many more
cases of integrals A(n, «) with negative powers n than in the case of using V (k, [; o, 8). See Ref. [7].
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o
Ni+L—2k—2g—2p —
x/ r 1+ A7 =1
0

© No—L42k+2 EREET QT
x/ r22 pe_wzrzdrz/ =7, T dra, (B.2)
0 |

ri—ra|

Integrating over the r|; variable and taking into account the two domains of integration
Egs. 30, 31 we finally have:

I(N1, Ny; w1, w23 v; L)
[L/2] L—2k L—2k—q

_ (—1)kta L\ (2L —2k\ (L -2k
=22 2 22L—2k(v+2q+2)(k)( L )( q )

k=0 ¢g=0 p=0

X(L—Zk—q)
D

[(v+2g+2)/2] (

v+2q+2

X 2i —1

)A(N1 +v+3—2k—2p—2i,w1)

i=1

X A(N2 — L — 142k +2p+2i,w)
Na+142k+2p—L

—om Y (N2+2f_+12p_L)

j=1

XAWINI+Na+1—-2g—j,o1+w) Aw+2g+ 14 j,wn) ¢ (B.3)

with O (v) as 1 for odd v, and O for even v. In the evaluation of four-electron integrals
only the case v = —1 occurs. These equations are general and they could have been
also been used to evaluate all the four-, three- and two-electron integrals, but the use
of V(k,I; o, B) wherever possible is better computationally.

InEq. (B3) A(N; — L —142k+2p+2i,w) and A(v +2¢g + 1 + j, w») never
have a negative argument. But the integrals: A(Ny +v + 3 — 2k —2p — 2i, 1) and
A(N1 + Na+ 1 —2q — j, w1 + w2) may take negative arguments 7.

The A(n, ) integrals with negative power n do not have a solution by themselves
but they do have a solution when they are combined. For example, consider the well
known relation:?

A1, a) — A(~1,a +y) =In (“:y) (B.4)

5 We use the notation a, 8, y for the exponents in the integrals.
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In general, we have obtained the form of the combinations of A integrals and their
value with the help of Maple [27]:

n—1

Agna.y) = A(=n.@) = A=n.a +y) = > L An+La+y)
=1
n—1

B 1 . a+y yk(_a)n—l—k
= o= [(—a) In (T) + f} (B.5)

k=1

Due to the minus sign in Eq. B.5, some loss of precision is inevitable. The values of
these expressions can be calculated with high accuracy using Maple. Using Fortran
90 and quadruple precision, about 26 decimal digit precision is achieved.

The combination of A integrals in Eq. B.5 are a difference of terms. The A(n, )
with positive sign originate from the first sum of Eq. B.3 and the A(n, o) integrals
with negative sign from the second one. As the integrals / come from the J integrals,
in the practice, we have to deal with sums of three exponents: w;, w;, w3.

Similar to the negative one-electron auxiliary integrals, the basic negative two-elec-
tron integrals do not usually have a solution by themselves for N; + L < —1 but they
do have a solution when they are combined. These combinations are of the kind:

Ni+L+3
)
TNt Nos on, 53 =150 = 3 S (N1 +k, Nay o1 + w2, 035 =15 L),
k=0 ’
Ny <—-L -2, N> > L (B.6)
We consider here only the case v = —1, the generalization for v > —1 is straightfor-

ward.

The evaluation of these groups of integrals leads to the groups of negative one-
electron integrals Eq. B.4. Using the symbol — for the negative part of an integral we
have:

7N17L72a)]2{
[(N1, Ny; o1, 03: —1:L) = > T LNtk N, o1 + w2, 03 =1 L)
k=0 ’
AN+ L +1,w3)
- A _N Lv )
L1 [Ag(=N1 + L, 01, w3)
—N1—L-2
Wy
— Z FAg(—Nl—k+L,w1+w3,w2)
k=0 ’
—N1—L-2
+ D hA(-NI—L—k— 1o + o), 03)
k=0

B.7
m=CLEDI 3¢y > 20 + k4 1 (B.7)

kim!

x[m ifm<2L+k+1:|
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with m = Ny + L + 1. In Table 1 values of L integrals have been calculated con-
sidering up to powers of —14. Integrals over several g-, h- orbitals are perhaps too
computationally intensive to be used in practice, i.e., in actual calculations using
the Hy-ClI the order for using angular orbitals will be used s-, p-, d-, f-,.. together
with one interelectronic distance per configuration. We give integrals over several g-,
h- orbitals here to show that the method is working for them.

Case 2: I containing V(k, —1l; a, B) withk — 1 < =2

In the evaluation of the K, integrals, one case (p(1)p(4)riar3a/r2zp(1)p(4))
appears (the same is true for d-, f-,- - - orbitals), which leads to integrals of the kind
V(k, —I; o, B) with k — [ < —2 which can not be solved used the Larsson sum. In dis-
cussing this case, consider the following integrals (N1, Ny < O and N + N> < —2):

—N1—N,-3 wg
I(N1, Np; w1, w3; —1, L) — Z ?I(M +14+4q,Nyyso1 + w2, w3;—1,L)
q=0 ’

T V(N1+L+1N2—L w1, w3, @)

AL+ Nz + 1, w3)
20+ 1

—N1—N,-3 wq
- D AL -Ni—gq o +o,w)
=0 T
—Ni—Ny-3 L+Ny+2+q
@3

+
2 Trmizirel
XAg(=Ni — N2 =3+ ¢q, w1 + w3, w2) (B.3)

Analogous to the relations among A(n, «) integrals, there are relations among the
V(k, —l; o, y) integrals for k — [ < —2. Some examples of these relations are:

vV, -3a,y) -V, -3+ 8,y)
va,—4a,y) —BV(2,—4a+6,y)— VU, -4 a0+ 8,y) (B.9)

These can be evaluated using the V' definition of Eq. A.2. Changing the domain of
integration:

00 oo o0 1) o0 oo o0
/ drl/ dry =/ drz/ dry =/ dr (/ dry —/ drl)
0 r 0 0 0 0 r

(B.10)
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using

n

00 ! q
/ PPy = b 3 (Br2) B.11)
.

n+1 |
2 B 7=0 q-:

and adding and substracting some terms one gets in general:

Velk, =lLia, vy, B) = Vik, =, 0, )
1—k—2 ,Bq
— D S Vk+g, —La+By) = Ak, a)A( y, @)
g=0 7
k=2

q
- Baktqotpadyatp
g=0 T

k=2 e
Y A l—k—s—1, , B.12
+§6(k+s+l)! 8 s-lytep) B12

The groups of integrals Ag(/, v, «) are given by Eq. B.5.
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